Adjustable Trajectory Design Based on Node Density for Mobile Sink in WSNs
نویسندگان
چکیده
The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences. To address these problems, we propose an adjustable trajectory design method based on node density for mobile sink in WSNs. The movement trajectory of the mobile sink in each subarea follows the Hilbert space-filling curve. Firstly, the trajectory is constructed based on network size. Secondly, the adjustable trajectory is established based on node density in specific subareas. Finally, the trajectories in each subarea are combined to acquire the whole network's movement trajectory for the mobile sink. In addition, an adaptable power control scheme is designed to adjust nodes' transmitting range dynamically according to the movement trajectory of the mobile sink in each subarea. The simulation results demonstrate that the proposed trajectories can adapt to network changes flexibly, thus outperform both in packet delivery ratio and in energy consumption the trajectories designed only based on the network size and the whole network node density.
منابع مشابه
An Energy Efficient Clustering Method using Bat Algorithm and Mobile Sink in Wireless Sensor Networks
Wireless sensor networks (WSNs) consist of sensor nodes with limited energy. Energy efficiency is an important issue in WSNs as the sensor nodes are deployed in rugged and non-care areas and consume a lot of energy to send data to the central station or sink if they want to communicate directly with the sink. Recently, the IEEE 802.15.4 protocol is employed as a low-power, low-cost, and low rat...
متن کامل3D Path Planning Algorithm for Mobile Anchor-Assisted Positioning in Wireless Sensor Networks
Positioning service is one of Wireless Sensor Networks’ (WSNs) fundamental services. The accurate position of the sensor nodes plays a vital role in many applications of WSNs. In this paper, a 3D positioning algorithm is being proposed, using mobile anchor node to assist sensor nodes in order to estimate their positions in a 3D geospatial environment. However, mobile anchor node’s 3D path optim...
متن کاملDesign Problems in large-scale, time-sensitive WSNs
There is a growing trend for ever larger wireless sensor networks (WSNs) consisting of thousands or tens of thousands of sensor nodes (e.g., [91, 79]). We believe this trend will continue and thus scalability plays a crucial role in all protocols and mechanisms for WSNs. Another trend in many modern WSN applications is the time sensitivity to information from sensors to sinks. In particular, WS...
متن کاملTracking Mobile Sinks via Analysis of Movement Angle Changes in WSNs
Existing methods for tracking mobile sinks in Wireless Sensor Networks (WSNs) often incur considerable energy consumption and overhead. To address this issue, we propose a Detour-Aware Mobile Sink Tracking (DAMST) method via analysis of movement angle changes of mobile sinks, for collecting data in a low-overhead and energy efficient way. In the proposed method, while a mobile sink passes throu...
متن کاملFault-resilient sensing in wireless sensor networks
Research on wireless sensor networks (WSNs) has received tremendous attention in the past few years due to their potential applications and advances in the VLSI design. In WSNs with tiny sensors, mobility of a sink may provide an energy efficient way for data dissemination. Having a mobile sink in WSN, however, creates new challenges to routing and sensor distribution modeling in the network. I...
متن کامل